Smart Energy Management System
MT61-GP

Focus on Smart Electricity
MT61-GP is a kind of innovative smart power meter, which includes hardware-smart metering breaker and software-power energy management platform for utility or enterprise and App for end-users. It integrates the most frontier technologies: AI, big data, IoT and cloud computing.

MT61-GP can realize energy consumption management, real-time monitoring, on-line payment, fault warning and alarm, Remote control. This system effectively helps utility and enterprise to rationally energy, reduce energy consumption, improve operation environment and increase economic benefits.

Overview

Structure

General Structure

- Gateway
- www
- LAN, RS485
- GSM/GPRS 2G/3G NB-IOT
- cloud
- Energy management Platform for utility or enterprises
- App for end-users
- 400 imp/Kwh
- Pulse output
- Top part of device
- Buzzer
- LCD screen
- Antenna Cover
- Metering seal
- Handle
- ON/OFF Indicator
- SIM Card slot
- Support 2G/3G SIM card
- Communication port
- 1&2: RS485
- 3: com port
- 4&5: Alarm Input
- Function Button
- Next, Confirm, Return (Left to right)
- Security Lock
- Pull out and hang lock (dia 4.5mm) while maintenance
- LED indicator
- Green: GPRS signal normal
- Green Flash: connecting to server
- Red Flash: Voltage abnormal or reclosing of voltage turns normal
- No light: No network
- Protection cover
- Metering CT module
- Side of device

Smart Energy Management System

www.matismart.com

www.matismart.com
MT61-GP is a kind of innovative smart power meter, which includes hardware-smart metering breaker and software-power energy management platform for utility or enterprise and App for end-users. It integrates the most frontier technologies: AI, big data, IoT and cloud computing.

MT61-GP can realize energy consumption management, real-time monitoring, on-line payment, fault warning and alarm, Remote control. This system effectively helps utility and enterprise to rationally energy, reduce energy consumption, improve operation environment and increase economic benefits.
Smart Energy Management System

Structure

Device Operation Instruction

1. **Confirm / Next / Return**

1. Confirm

2. Energy inquiry / Parameter query / Device information

3. Status / Trip or Reclose status / Communication Connection

- **Network Status Real Time**

 - Multi-tariff
 - Tariff 4 (kWh): 0000000.00
 - Electricity Theft Detection, Terminal Cover Locked, Alarm of Opening Meter Box

- **Device Information**

 - Status: Close (Open)
 - Open total: 21
 - Trip total: 12

- **Add 1 Baud Rate: 9600 Check Digit: NONE Version: 5.01**

Features

Individual Device

- This system is a kind of “all-in-one device”, which integrates smart metering breaker, protection, remote control and communication etc. It includes single phase two wires and three phases four wires, and the rated current is up to 100A.

Minimum Space Requirement

- Comparing to traditional 2P and 4P MCB, it only has extra controller of 36mm width.

Very simple installation

- The device can be mounted in 35mm Din Rail very easily and individually.

Metering

- Active and reactive energy metering (accuracy: class 1.0)
- Respective Measurement of Forward/reverse active energy (Programmable)
- Maximum demand (MD) Measurement
- Multi-tariff measurement: 4 tariffs (Sharp, Peak, Flat, Valley) and 24 hours shifts & automatic Switch to the other standby tariff 2 monthly billings record (data item programmable)
- 7 digits
- Data frozen: daily weekly monthly, quarterly data frozen and be transferred to cloud sever.
- Strong anti-tamper functions: Electricity theft detection, terminal cover locked, alarm of opening meter box.

Full Protection

- This system includes all the protections: Overload, Short Circuit, Over/Under Voltage, Phase Loss, unbalance, High Temperature

Communication

- Rx485, GRPS2G/3G, NB-IoT
- Modbus and MQTT

Electrical faults analysis

- The device may realize real-time analysis of all electrical faults: short circuit, earth leakage, overload, over/under voltage, overheated.

Monitoring in real time

- The device may make realize real-time monitoring of electrical circuit parameters: Current, voltage, active Power, reactive power, Power factor, Frequency, temperature

Over/under voltage value and over current protection value limit

- The over/under voltage value and over current protection value can be adjustable through software platform.
Features

Individual Device
This system is a kind of "all-in-one device", which integrates smart metering breaker, protection, remote control and communication etc. It includes single phase two wires and three phases four wires, and the rated current is up to 100A.

Minimum Space requirement
Comparing to traditional 2P and 4P MCB, it only has extra controller of 36mm width.

Very simple installation
The device can be mounted in 35mm Din Rail very easily and individually.

Metering:
- Active and reactive energy metering (accuracy: class 1.0)
- Respective measurement of forward/reverse active energy (Programmable)
- Maximum demand (MD) Measurement
- Multi-tariff measurement: 4 tariffs (Sharp, Peak, Flat, Valley) and 24 hours shifts & automatic Switch to the other standby tariff, 12 monthly billings record (data item programmable)
- 7 digits
- Data frozen: daily weekly, monthly, quarterly data frozen and be transferred to cloud sever.
- Strong anti-tamper functions: Electricity theft detection, terminal cover locked and alarm of opening meter box door.

Full Protection
This system includes all the protections: Overload, Short Circuit, Over/Under Voltage, Phase Loss, unbalance, High Temperature

Communication:
- RS485, GPRS/2G/3G, NB-IoT
- Modbus and MQTT

Electrical faults analysis
The device may realize real-time analysis of all electrical faults: short circuit, earth leakage, overload, over/under voltage, overheated.

Monitoring in real time
The device may make realize real-time monitoring of electrical circuit parameters: Current, voltage, active Power, reactive power, Power factor, Frequency, temperature

Over/Under voltage value and over current protection value limit
The over/under voltage value and over current protection value can be adjustable through software platform.
Benefits

Intelligent Energy meter with advanced billing system

The developing countries are still deficient in the generation of Electrical energy in contrast to demand of the country. In addition to this, prominent problem they are facing is electrical power loss. In some countries the loss is so severe that the government has to allocate loan or subsidies so that the utilities can sustain. The most prominent reason behind the loss is unpaid bill and energy theft.

Detecting power theft

The system has two facilities to detect power theft: meter alert system and terminal cover locked. The alert system will send alert SMS to software platform when there is power theft after supply cut in addition to this, as there is daily data availability fetched from each device, so one can predict per day consumption for some period then one can check respected device for energy theft.

Energy Consumption Management

This system can help increase the energy efficiency and cost savings, maximise electrical network reliability and availability, and optimise electrical asset performance.

- Collect and analyse energy consumption data from each area for each type of load or circuit
- Gain an accurate understanding of business expenses by allocating the energy-related costs
- Bill checking to verify that you are only charged for the energy you use
- Energy cost and usage analysis per zone, per usage or per time period to optimise energy usage

Remote control

The hardware device may be controlled by software platform of Utility or enterprise customers, if the customers' charge in account is overdue, the utility may switch off the device remotely.

Software Introduction

The smart energy management system is an innovative cloud-computing platform which mainly is used in utility as smart meter, telecom and industry. For the sector of utility, software includes App operation version in smart phone for customer’s use and management software platform for utility or enterprise’s use.

APP

It includes, Billing, account and online payment, device management, safety supervision, energy consumption analysis

Real-time monitoring

Showing operation status of important load at all the times and places and helping to improve energy management ability.

Safety Supervision

The system can make the following alarms: overload, short circuit, over current, under voltage and under voltage, phase loss and unbalance. It can improve the power quality and protect appliances from electrical faults.

Energy consumption analysis and comparison

Multi-dimensional energy consumption and comparison daily, monthly, quarterly and yearly may be released and it help the customer to make energy saving and cost saving.

Billing:

The real-time power consumption and bill of each device information can be checked and read through terminal APP.

Account and online payment

The customers open one account in the terminal App and the balance in account can be check and the alert will be showed in the APP if the balance is less the limit regulated by utility. The customer may make the online payment through credit card or Alipay.

Device management:

The device may be controlled remotely by App and all real-time electrical parameter of device may be showed here: current, voltage, active power, reactive power, frequency, Power factor, temperature and others.
The developing countries are still deficient in the generation of Electrical energy in contrast to demand of the country. In addition to this, prominent problem they are facing is electrical power loss. In some countries the loss is so severe that the government has to allocate loan or subsidies so that the utilities can sustain. The most prominent reason behind the loss is unpaid bill and energy theft.

The system has two facilities to detect power theft: meter alert system and terminal cover locked. The alert system will send alert SMS to software platform when there is power theft after supply cut in addition to this, as there is daily data availability fetched from each device, so one can predict per day consumption for some period then one can check respected device for energy theft.

The hardware device may be controlled by software platform of Utility or enterprise customers, if the customer's charge in account is overdue, the utility may switch off the device remotely.

The real-time power consumption and bill of each device information can be checked and read through terminal APP.

The system can make the following alarms: overload, short circuit, over current, over voltage and under voltage, phase loss and unbalance. It can improve the power quality and protects appliances from electrical faults.

The smart energy management system is an innovative cloud-computing platform which mainly is used in utility as smart meter, telcom and industry. For the sector of utility, software includes App operation version in smart phone for customer's use and management software platform for utility or enterprise's use.

It includes, Billing, account and online payment, device management, safety supervision, energy consumption analysis.

Real-time monitoring
Showing operation status of important load at all the times and places and helping to improve energy management ability.

Safety Supervision
The customers open one account in the terminal App and the balance in account can be check and the alert will be showed in the APP if the balance is less the limit regulated by utility. The customer may make the online payment through credit card or Alipay.

Energy consumption analysis and comparison
Multi-dimensional energy consumption and comparison daily, monthly, quarterly and yearly may be released and it help the customer to make energy saving and cost saving.
Smart Energy Management System

Software Platform

Software platform is designed to make control management, billing and payment management, real-time electrical parameter monitoring, energy consumption management, anti-tamper management, electrical safety supervision and data report for utility or enterprises.

Control management
The device may be controlled by software platform of Utility or enterprise customers, if the customers’ charge in account is overdue, the utility may switch off the device remotely.

Electrical safety supervision
The system can make the following alarms: overload, short circuit, over current, over voltage and under voltage, phase loss and unbalance and show the location of device with fault.

Energy consumption management
The system helps illustrate and analyze the instantaneous energy consumption level and realize the real time power efficiency monitoring. The platform customize load classification, vertical comparison between classified load. Therefore, it help identify energy saving, further to save energy cost, through analysis and comparison.

Real-time parameter monitoring
The platform can show operation status of all the loads at all times and places and help to improve energy management ability.

Data report
The system can provide real-time report and historical data report, these reports show real-time data and status for operation system in uniform table format which can provide dynamic comparison and monitoring for each device.

Smart Energy Management System

Billing and payment management
The utility or enterprise can release on-time bill to App terminal of each customers and collect electricity tariffs through software platform. The utility or enterprise will take actions when the charge in account of customer is overdue.
Smart Energy Management System

Software Platform

Software platform is designed to make control management, billing and payment management, real-time electrical parameter monitoring, energy consumption management, anti-tamper management, electrical safety supervision and data report for utility or enterprises.

Control management

The device may be controlled by software platform of Utility or enterprise customers, if the customers' charge in account is overdue, the utility may switch off the device remotely.

Electrical safety supervision

The system can make the following alarms: overload, short circuit, over current, over voltage and under voltage, phase loss and unbalance and show the location of device with fault.

Energy consumption management

The system helps illustrate and analyze the instantaneous energy consumption level and realize the real time power efficiency monitoring. The platform customize load classification, vertical comparison between classified load. Therefore, it help identify energy saving, further to save energy cost, through analysis and comparison.

Real-time parameter monitoring

The platform can show operation status of all the loads at all times and places and help to improve energy management ability.

Data report

The system can provide real-time report and historical data report, these reports show real-time data and status for operation system in uniform table format which can provide dynamic comparison and monitoring for each device.

Billing and payment management

The utility or enterprise can release on-time bill to App terminal of each customers and collect electricity tariffs through software platform. The utility or enterprise will take actions when the charge in account of customer is overdue.
Applications

Internal energy management and assessment

Application case: Independent energy management and assessment

Keywords: Independent measurement, accurate and reliable, energy saving and efficiency increasing.

In this software platform, the user may find the basic analytic functions such as a dashboard data, instantaneous values, comparison functions and cost allocation by consumer group.

The building energy flows and costs are transparent, therefore, this solution is suitable for energy management and energy cost allocation application seeking energy efficiency improvement and cost reductions.

Key customer value

- It stops billing electricity according to the area, and provides a more reasonable billing method: independent and accurate measurement of the actual electricity consumption of each store.

- It understands the power consumption and manages comprehensively by dividing the public area.

- It implements the overall energy-saving tasks of the mall through various methods such as inter-regional comparison and electricity tariff management system.

- It establishes a simple power management system to improve the energy management efficiency of the mall.

Recommended solution

- An electric energy meter is installed in the distribution box of each independent metering area of the shopping mall, and the meter is independently measured.

- An electric meter is installed in the distribution room of each floor to measure the energy consumption of the public area and the power parameter monitoring.

- The instrument uses Schneider's rail-mounted electric energy meter, which is small in size and easy to install, which saves space.

Applications

Independent power line

Application case: Commercial building

Keywords: Load energy consumption, energy management system, high cost-effective solution

- The building, identifying areas where energy needs to be improved, and helping to reduce building energy consumption.

- Reliable energy consumption data of these public facilities, enabling electricity to control the entire energy use process within the building.

- As a facility manager, I want to make the most of lighting control systems. There is also a need to keep abreast of the trend of intelligent lighting.

Key customer value

- It measures independently the energy consumption of each load in the building, such as air conditioners, elevators, pumps, lighting, etc.

- Obtain comprehensive energy consumption information, establish and optimize energy management systems, review reports in a variety of ways and find energy consumption through comparison.

- Optimize equipment operating efficiency and avoid unnecessary investment, saving 2%-5% of building operation costs.

- It can provide end-to-end one-stop services, from installation and configuration, communication debugging to software development.

Equipment advantage

- Accurately count the energy consumption of each equipment and load to obtain comprehensive and detailed energy data.

- Through the equipment energy analysis, benchmarking and some other methods, establish a scientific electricity model and optimize the use of equipment.

- Establish and improve the power management system, so that there are calculable and comparable standards.

- Verify the actual effect of some energy-saving investments and avoid unnecessary investment to increase the return on investment.
Applications

Internal energy management and assessment

Application case: Internal energy management and assessment

Key customer value

- It stops billing electricity according to the area, and provides a more reasonable billing method: independent and accurate measurement of the actual electricity consumption of each store.

- It understands the power consumption and manages comprehensively by dividing the public area.

- It implements the overall energy-saving tasks of the mall through various methods such as inter-regional comparison and electricity traffic management system.

- It establishes a simple power management system to improve the energy management efficiency of the mall.

Recommended solution

- An electric energy meter is installed in the distribution box of each independent metering area of the shopping mall, and the meter is independently measured.

- An electric meter is installed in the distribution room of each floor to measure the energy consumption of the public area and the power parameter monitoring.

- The instrument uses Schneider's rail-mounted electric energy meter, which is small in size and easy to install, which saves space.

Applications

Independent power line

Application case: Commercial building

Keywords: Load energy consumption, energy management system, high cost-effective solution

Key customer value

- It measures independently the energy consumption of each load in the building, such as air conditioners, elevators, pumps, lighting, etc.

- Obtain comprehensive energy consumption information, establish and optimize energy management systems, review reports in a variety of ways and find energy consumption through comparison.

- Optimize equipment operating efficiency and avoid unnecessary investment, saving 2%-5% of building operation costs.

- It can provide end-to-end one-stop services, from installation and configuration, communication debugging to software development.

Equipment advantage

- Accurately count the energy consumption of each equipment and lead to obtain comprehensive and detailed energy data.

- Through the equipment energy analysis, benchmarking and some other methods, establish a scientific electricity model and optimize the use of equipment.

- Establish and improve the power management system, so that there are calculable and comparable standards.

- Verify the actual effect of some energy-saving investments and avoid unnecessary investment to increase the return on investment.
Applications

Energy saving increases productivity

Application case: Industrial production

Keywords: energy consumption assessment, production efficiency

As a production manager, I need to ensure a high qualification rate while continuously improving production efficiency. By comparing the power consumption records of production equipment, the energy efficiency ratio of the team can be assessed, and the energy efficiency of labor and equipment can be improved to ensure the highest operation of the process.

Electrical and energy management

- Detailed measurement of energy consumption data of key equipment and complete sets of equipment on the production line, and analysis of changes in different environments.

- By analyzing the energy consumption data, it is timely found that the equipment is abnormal, such as lack of lubrication, etc., to improve equipment energy efficiency.

Production and efficiency management

- Through the analysis of the energy consumption and output data, the energy consumption comparison between the production team is evaluated.

- To establish energy consumption evaluation and management system to improve production management level.
Smart Energy Management System

Applications
Energy saving increases productivity

Application case: Industrial production

Keywords: energy consumption assessment, production efficiency

As a production manager, I need to ensure a high qualification rate while continuously improving production efficiency. By comparing the power consumption records of production equipment, the energy efficiency ratio of the team can be assessed, and the energy efficiency of labor and equipment can be improved to ensure the highest operation of the process.

Electrical and energy management
- Detailed measurement of energy consumption data of key equipment and complete sets of equipment on the production line, and analysis of changes in different environments.
- By analyzing the energy consumption data, it is timely found that the equipment is abnormal, such as lack of lubrication, etc., to improve equipment energy efficiency.

Production and efficiency management
- Through the analysis of the energy consumption and output data, the energy consumption comparison between the production team is evaluated.
- To establish energy consumption evaluation and management system to improve production management level.

Smart City

Smart Metering System

Utility

Software platform for utility
APP for customers

www.matismart.com
Applications

Industry

Smart Energy Management System

Applications

Telecom tower

Smart Energy Management System
Applications

Smart Energy Management System

- Industry
- Telecom tower

![Image of a petrochemical plant and a telecom tower. Diagram showing connections between MTC-WF, RS-485, LAN, TCP/IP, GPRS, and IMCB for smart metering breakers.]
Technical specification

Item Code:
- MT61-GPS
- MT61-GPT

Standards:
- IEC62053-21, IEC60898

Approvals:
- CE, CCC

Phase
- Single phase
- Three phase

Rated Voltage
- 230V/110V
- 380/220V

Working Voltage
- 500 Vac

Maximum Voltage
- 500 Vac

Insulation Voltage
- 900 Vac

Type of Energy Meter
- Bidirectional Meter (Purchase and supply)

Measurement Value
- Active energy (kWh), Reactive energy (kvar), active Power(kW), Current(A), Voltage(V), Power factor(cosφ), temperature, Switch Status

Accuracy for Active energy
- Class I

Accuracy for Reactive energy
- 1000 imp/kWh

Frequency (Hz):
- 50/60 Hz

Rated Current
- 16, 32, 40, 63, 80, 100 A

Current (A)
- 125 A

Measuring range
- 0.4-18400W

Data storage
- 24 months

Power consumption
- Rated Impulse withstand voltage (1.2/50) Uimp Vac
- 2500

Rated Breaking capacity acc.to IEC60899 Icn A
- 6000

Tripping Characteristic
- C (5-10)I)

Connectivity
- RS485, GPRS 2G, GPRS 3G (900/2100MHz)

Conductor cross sections
- 25 mm²

Pollution Degree
- 2

Ambient temperature:
- °C
- -15 to +60

Storage temperature:
- °C
- -25 to +70

Humidity
- < 95%

Altitude
- m
- < 2000

Terminal Connection
- Cable/Pin type busbar

Mounting
- Din rail En60715 (35mm) by means of fast clip device

Connection
- From top to bottom

Ordering information

<table>
<thead>
<tr>
<th>Pictures</th>
<th>Curve</th>
<th>Phase</th>
<th>Rated current In (A)</th>
<th>Communication</th>
<th>Type Code</th>
<th>No of Modules (1 module=18mm)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td></td>
<td>Single Phase</td>
<td>16</td>
<td>GPRS 2G</td>
<td>MT61-GPS16G2</td>
<td>4 (72mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>MT61-GPS32G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>MT61-GPS40G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>63</td>
<td>MT61-GPS63G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>MT61-GPS80G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>MT61-GPS80G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>Three Phase</td>
<td>16</td>
<td>GPRS 2G</td>
<td>MT61-GPT16G2</td>
<td>8 (144mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>MT61-GPT32G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>MT61-GPT40G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>63</td>
<td>MT61-GPT63G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>MT61-GPT80G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>MT61-GPT100G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>Single Phase</td>
<td>16</td>
<td>GPRS 3G</td>
<td>MT61-GPS16G3</td>
<td>4 (72mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>MT61-GPS32G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>MT61-GPS40G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>63</td>
<td>MT61-GPS63G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>MT61-GPS80G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>MT61-GPS80G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>Three Phase</td>
<td>16</td>
<td>GPRS 3G</td>
<td>MT61-GPT16G3</td>
<td>8 (144mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>MT61-GPT32G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>MT61-GPT40G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>63</td>
<td>MT61-GPT63G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>MT61-GPT80G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>MT61-GPT100G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>Single Phase</td>
<td>16</td>
<td>NB-IoT</td>
<td>MT61-GPS16NB</td>
<td>4 (72mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>MT61-GPS32NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>MT61-GPS40NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>63</td>
<td>MT61-GPS63NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>MT61-GPS80NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>MT61-GPS80NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>Three Phase</td>
<td>16</td>
<td>NB-IoT</td>
<td>MT61-GPT16NB</td>
<td>8 (144mm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>32</td>
<td>MT61-GPT32NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>MT61-GPT40NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>63</td>
<td>MT61-GPT63NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>80</td>
<td>MT61-GPT80NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>MT61-GPT100NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accessory

<table>
<thead>
<tr>
<th>Pictures</th>
<th>Accessory name</th>
<th>Specification</th>
<th>Type Code</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mini antenna</td>
<td>MT61-GPMTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antenna</td>
<td>MT61-GPATL</td>
<td></td>
</tr>
</tbody>
</table>
Smart Energy Management System

Instruction of type code for power supply module

Company code	series code
MT | 61
GP | S
Product code | Rated current (40,63,80,100A)

Technical specification

- **Item Code:** MT61-GPS, MT61-GPT
- **Picture**
- **Standards:** IEC62053-21, IEC60898
- **Approvals:** CE, CCC
- **Phase:** Single phase, Three phase
- **Rated Voltage:** Vac 230V/110V, 380/220V
- **Working Voltage:** Vac 500
- **Maximum Voltage:** Vac 1000
- **Insulation Voltage:** Vac 1000
- **Type of Energy Meter:** Bidirectional Meter(Purchase and supply)
- **Measurement Value:**
 - Active energy (kWh), Reactive energy (kvar), active Power(kW), Current(A), Voltage(V), Power factor(cospφ), temperature, Switch Status
- **Accuracy for Active energy:** Class 1
- **Accuracy for Reactive energy:** 1000 Imp/kWh
- **Frequency (HZ):** 50/60Hz
- **Rated Current:** A 16, 32, 40, 63, 80, 100
- **Limit Current:** A 125A
- **Measuring range:** 0.4-18400W
- **Data storage:** 24 months
- **Power consumption:**
 - Rated impulse withstand voltage (1.2/50) Uimp Vac 2500
 - Rated Breaking capacity acc.to IEC60899 Icn A 6000
- **Triping Characteristic:** C (S-10n)
- **Connectivity:** RS485, GPRS 2G, GPRS 3G(900/2100MHz)
- **Conductor cross-sections:** mm² 25
- **Pollution Degree:** 2
- **Ambient temperature:** °C -15 - +60
- **Storage temperature:** °C -25 - +70
- **Humidity:** < 95%
- **Altitude:** m < 2000
- **Terminal Connection:** Cable/Pin, type busbar
- **Mounting:** Din rail En60715 (35mm) by means of fast clip device
- **Connection:** From top to bottom

Ordering information

<table>
<thead>
<tr>
<th>Pictures</th>
<th>Curve</th>
<th>Phase</th>
<th>Rated current In (A)</th>
<th>communication</th>
<th>Type Code</th>
<th>No of Modules (1 module=18mm)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Single Phase</td>
<td>16</td>
<td>GPRS 2G</td>
<td>MT61-GPS16G2</td>
<td>4 (72mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>MT61-GPS32G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>MT61-GPS40G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>MT61-GPS63G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>MT61-GPS80G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>MT61-GPS80G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Three Phase</td>
<td>16</td>
<td>GPRS 2G</td>
<td>MT61-GPT16G2</td>
<td>8 (144mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>MT61-GPT32G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>MT61-GPT40G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>MT61-GPT63G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>MT61-GPT80G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>MT61-GPT100G2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Single Phase</td>
<td>16</td>
<td>GPRS 3G</td>
<td>MT61-GPS16G3</td>
<td>4 (72mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>MT61-GPS32G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>MT61-GPS40G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>MT61-GPS63G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>MT61-GPS80G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>MT61-GPS80G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Three Phase</td>
<td>16</td>
<td>GPRS 3G</td>
<td>MT61-GPT16G3</td>
<td>8 (144mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>MT61-GPT32G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>MT61-GPT40G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>MT61-GPT63G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>MT61-GPT80G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>MT61-GPT100G3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Single Phase</td>
<td>16</td>
<td>NB-IoT</td>
<td>MT61-GPS16NB</td>
<td>4 (72mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>MT61-GPS32NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>MT61-GPS40NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>MT61-GPS63NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>MT61-GPS80NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>MT61-GPS80NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>Three Phase</td>
<td>16</td>
<td>NB-IoT</td>
<td>MT61-GPT16NB</td>
<td>8 (144mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>MT61-GPT32NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>MT61-GPT40NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>MT61-GPT63NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>MT61-GPT80NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>MT61-GPT100NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accessory

- **Picsures**
- **Accessory name**
- **Specification**
- **Type Code**

| Mini antenna | MT61-GPMTS |
| Antenna | MT61-GPATL |
Technical information

Tripping characteristic curves

Magnetic trip diagram

C-curve: (5-10) In

B-curve: (3-5) In

D-curve: (10-14) In

Magnetic release for Smart Breaker

An electromagnet with plunger ensures instantaneous tripping in case of short circuit. The IEC60898 distinguishes three different types: B, C, D

<table>
<thead>
<tr>
<th>Standard</th>
<th>Curve</th>
<th>Start Status</th>
<th>Test current</th>
<th>Test Request</th>
<th>Tripping time</th>
<th>Applications</th>
<th>Ambient Temperature for Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC60898</td>
<td>B</td>
<td>Cold</td>
<td>9In</td>
<td>No trip</td>
<td>t < 0.1s</td>
<td>Only for resistive loads such as: Electrical heating water heating stoves</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Cold</td>
<td>5In</td>
<td>Trip</td>
<td>t < 0.1s</td>
<td>Usual loads such as: Lighting Socket outlets small motor</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Cold</td>
<td>10In</td>
<td>Trip</td>
<td>t < 0.1s</td>
<td>Control and protection of circuits having important transient inrush currents(large motors)</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Thermal release for Smart Breaker

The release is initiated by a bimetal strip in case of overload, the standard defines the range of release for specific overload value.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Start Status</th>
<th>Test current</th>
<th>Test Request</th>
<th>Tripping time</th>
<th>Ambient Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC60898</td>
<td>Cold</td>
<td>1.13In</td>
<td>No Trip</td>
<td>T < t(1h(In≤63A))</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hot</td>
<td>1.45In</td>
<td>Trip</td>
<td>T < t(2h(In≤63A))</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cold</td>
<td>2.55In</td>
<td>Trip</td>
<td>15s < t(10s(In≤32A))</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference ambient temperature is 30°C
Technical information

Tripping characteristic curves

Magnetic trip diagram

- **B-curve**: (3-5) In
- **C-curve**: (5-10) In
- **D-curve**: (10-14) In

An electromagnet with plunger ensures instantaneous tripping in case of short circuit. The IEC60898 distinguishes three different types: B, C, D

<table>
<thead>
<tr>
<th>Standard</th>
<th>Curve</th>
<th>Start Status</th>
<th>Test current</th>
<th>Test Request</th>
<th>Tripping time</th>
<th>Applications</th>
<th>Ambient Temperature for Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC60898</td>
<td>B</td>
<td>Cold</td>
<td>3In</td>
<td>No trip</td>
<td>t ≤ 0.1s</td>
<td>Only for resistive loads such as: Electrical heating, water heating, stoves</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Cold</td>
<td>5In</td>
<td>Trip</td>
<td>t < 0.1s</td>
<td>Usual loads such as: Lighting, socket outlets, small motor</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Cold</td>
<td>10In</td>
<td>Trip</td>
<td>t < 0.1s</td>
<td>Control and protection of circuits having important transient inrush currents (large motors)</td>
<td>30°C</td>
</tr>
</tbody>
</table>

Thermal release for Smart Breaker

The release is initiated by a bimetal strip in case of overload, the standard defines the range of release for specific overload value

Refer to ambient temperature is 30°C

<table>
<thead>
<tr>
<th>Standard</th>
<th>Start Status</th>
<th>Test current</th>
<th>Test Request</th>
<th>Tripping time</th>
<th>Ambient Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC60898</td>
<td>Cold</td>
<td>1.13In</td>
<td>No Trip</td>
<td>T = 1h(In≤63A)</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T = 2h(In≤63A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hot</td>
<td>1.45In</td>
<td>Trip</td>
<td>T = 1h(In≤63A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T = 2h(In≤63A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cold</td>
<td>2.55In</td>
<td>Trip</td>
<td>1s≤ t≤120s(In≤32A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1s≤ t≤120s(In>32A)</td>
<td></td>
</tr>
</tbody>
</table>
Magnetic release for Smart Breaker

An electromagnet with plunger ensures instantaneous tripping in case of short circuit. The IEC60898 distinguishes three different types: B, C, D

<table>
<thead>
<tr>
<th>Standard Curve</th>
<th>Start Status</th>
<th>Test Current</th>
<th>Test Request</th>
<th>Tripping Time</th>
<th>Applications</th>
<th>Ambient Temperature for Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC60898</td>
<td>B</td>
<td>Cold</td>
<td>3In</td>
<td>No trip</td>
<td>t < 0.1s</td>
<td>Only for resistive loads such as: Electrical heating, water heating, stoves</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cold</td>
<td>5In</td>
<td>Trip</td>
<td>t < 0.1s</td>
<td>Usual loads such as: Lighting, Socket outlets, small motor</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Cold</td>
<td>5In</td>
<td>No trip</td>
<td>t < 0.1s</td>
<td>Control and protection of circuits having important transient inrush currents (large motors)</td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Cold</td>
<td>10In</td>
<td>No trip</td>
<td>t < 0.1s</td>
<td></td>
</tr>
</tbody>
</table>

Thermal release for Smart Breaker

The release is initiated by a bimetal strip in case of overload, the standard defines the range of release for specific overload value

Reference ambient temperature is 30ºC

<table>
<thead>
<tr>
<th>Standard Curve</th>
<th>Start Status</th>
<th>Test Current</th>
<th>Test Request</th>
<th>Tripping Time</th>
<th>Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC60898</td>
<td>Cold</td>
<td>1.13In</td>
<td>No trip</td>
<td>T = t1(n<63A)</td>
<td>30ºC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.55In</td>
<td>Trip</td>
<td>T = t2(n<63A)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>T = t3(n>63A)</td>
<td></td>
</tr>
</tbody>
</table>

Screw size

<table>
<thead>
<tr>
<th>Screw size</th>
<th>Rated Torque</th>
<th>Ultimate Torque</th>
<th>National Standard</th>
<th>Hard line</th>
<th>Cord or Hoop Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1~25</td>
<td>2.5 Nm</td>
<td>5.1 Nm</td>
<td>2.0 Nm</td>
<td>1-2.5mm²</td>
<td>1-16mm²</td>
</tr>
<tr>
<td>32~80</td>
<td>3.5 Nm</td>
<td>5.6 Nm</td>
<td>3.5 Nm</td>
<td>1-3.5mm²</td>
<td>1-25mm²</td>
</tr>
</tbody>
</table>

Smart Energy Management System

Installation and Wiring Diagram

- This product must be installed by authorized electrician.
- The safety lock should be pulled out before installation to avoid electric shock.
- It requires to input SIM data card (12x15x0.8mm), with metal face downside in slot, before power on. Press SIM card inside and it will spring out. (Note: No such slot for SIM card if standard version)
- Screw tightly all terminal screws, release safety lock to return inside. (It requires to switch on the device once through RS485 if reclose fails)
- Screw tightly all terminal screws
- Manualy switch on the handle once.

APN Configuration

- On Request

Data SIM card APN configuration
Magnetic release for Smart Breaker

An electromagnet with plunger ensures instantaneous tripping in case of short circuit. The IEC60898 distinguishes three different types: B, C, D.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Curve</th>
<th>Start Status</th>
<th>Test current</th>
<th>Test Request</th>
<th>Tripping time</th>
<th>Applications</th>
<th>Ambient Temperature for Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC60898</td>
<td>B</td>
<td>Cold</td>
<td>3In</td>
<td>No trip</td>
<td>t < 0.1s</td>
<td>Only for resistive loads such as: Electrical heating water heating stoves</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td>Cold</td>
<td>5In</td>
<td>Trip</td>
<td>t < 0.1s</td>
<td></td>
<td>Usual loads such as: Lighting Socket outlets small motor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>Cold</td>
<td>5In</td>
<td>No trip</td>
<td>t < 0.1s</td>
<td>Control and protection of circuits having important transient inrush currents(large motors)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D</td>
<td>Cold</td>
<td>10In</td>
<td>No trip</td>
<td>t < 0.1s</td>
<td>Control and protection of circuits having important transient inrush currents(large motors)</td>
<td></td>
</tr>
</tbody>
</table>

Thermal release for Smart Breaker

The release is initiated by a bimetal strip in case of overload, the standard defines the range of release for specific overload value.

Reference ambient temperature is 30°C.

<table>
<thead>
<tr>
<th>Standard</th>
<th>Start Status</th>
<th>Test current</th>
<th>Test Request</th>
<th>Tripping time</th>
<th>Ambient Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC60898</td>
<td>Cold</td>
<td>1.13In</td>
<td>No Trip</td>
<td>T < 1In/63A</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td>Hot</td>
<td>1.45In</td>
<td>Trip</td>
<td>T < 2In/63A</td>
<td>30°C</td>
</tr>
<tr>
<td></td>
<td>Cold</td>
<td>2.55In</td>
<td>Trip</td>
<td>1s < 1In/63A</td>
<td>30°C</td>
</tr>
</tbody>
</table>

Screw size | Rated torque | Ultimate torque | National standard | Hard line | Cord or hoop terminal |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1~25</td>
<td>2.5 Nm</td>
<td>5.1 Nm</td>
<td>2.0 Nm</td>
<td>1-2.5mm²</td>
<td>1-16mm²</td>
</tr>
<tr>
<td>32~80</td>
<td>3.5 Nm</td>
<td>5.6 Nm</td>
<td>3.5 Nm</td>
<td>1-3.5mm²</td>
<td>1-2.5mm²</td>
</tr>
</tbody>
</table>

Installation and Wiring Diagram

- This product must be installed by authorized electrician.
- The safety lock should be pulled out before installation to avoid electric shock.
- It requires to input SIM data card (12x15x0.8mm), with metal face downside in slot, before power on. Press SIM card inside and it will spring out. (Note: no such slot for SIM card if standard version)
- Screw tightly all terminal screws, release safety lock to return inside. (it requires to switch on the device once through Rs485 if reclose fails)
- Open antenna cover, and screw the terminal (No antenna for standard version)
- APN Configuration
- Manualy switch on the handle once.

Smart Energy Management System
Smart Energy Management System
MT61-GP

Focus on Smart Electricity